Production of aromatic compounds during methanogenic degradation of straw in rice field soil.

نویسندگان

  • Kristin Glissmann
  • Elke Hammer
  • Ralf Conrad
چکیده

Production of CH(4) in anoxic rice field soil is stimulated by the addition of rice straw. Previous experiments showed that acetate and propionate are the most important intermediates of the carbon flow to CH(4), and accumulate if CH(4) production is inhibited by 2-bromoethanesulfonate (BES). However, some unidentified compounds were found to accumulate in addition. We now identified them as benzoate, phenylpropionate, and phenylacetate by comparison of the retention times in HPLC chromatograms with authentic standards and by mass spectrometry. These aromatic compounds accumulated only to concentrations <100 microM, especially in soil amended with rice straw (stem, sheath or blade straw). Phenylpropionate and benzoate were the most abundant aromatic intermediates contributing up to 4% to total CH(4) production. Phenylacetate, on the other hand, contributed very little (<0.3%). Gibbs free energies (DeltaG) were calculated for different anaerobic degradation pathways of the aromatic compounds at the actual incubation conditions. Conversion of benzoate to acetate, CO(2) and H(2) was strongly exergonic (DeltaG = -86 kJ mol(-1)) under methanogenic conditions, but became less exergonic (DeltaG = -30 kJ mol(-1)) when CH(4) production was inhibited. The primary oxidation of phenylpropionate was only exergonic for alpha-oxidation (i.e. phenylacetate as product) but not for beta-oxidation (i.e. benzoate as product). However, the DeltaG values for the complete degradation of phenylpropionate to acetate, CO(2) and H(2) were similar for both pathways and were also similar to those of benzoate degradation. Collectively, the results suggest that aromatic compounds are minor intermediates of anaerobic degradation of organic matter in rice field soil, and are syntrophically degraded by coupling to methanogenesis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Methanogenic Pathway and Archaeal Communities in Three Different Anoxic Soils Amended with Rice Straw and Maize Straw

Addition of straw is common practice in rice agriculture, but its effect on the path of microbial CH(4) production and the microbial community involved is not well known. Since straw from rice (C3 plant) and maize plants (C4 plant) exhibit different δ(13)C values, we compared the effect of these straw types using anoxic rice field soils from Italy and China, and also a soil from Thailand that h...

متن کامل

H2-Producing Bacterial Community during Rice Straw Decomposition in Paddy Field Soil: Estimation by an Analysis of [FeFe]-Hydrogenase Gene Transcripts

The transcription patterns of [FeFe]-hydrogenase genes (hydA), which encode the enzymes responsible for H2 production, were investigated during rice straw decomposition in paddy soil using molecular biological techniques. Paddy soil amended with and without rice straw was incubated under anoxic conditions. RNA was extracted from the soil, and three clone libraries of hydA were constructed using...

متن کامل

Impact of 15N-labeled rice straw and rice straw compost application on N mineralization and N uptake by rice

Incorporation of plant residues in soil affects N and C content and dynamics. This studydetermined the effects of short-term alternative rice (Oryza sativa L.) residue management on Nmineralization and uptake by rice. Pot and laboratory incubation experiments were established byincorporating 15N-labeled rice straw and rice straw compost in paddy soil. The 15N recovered by riceaveraged 16.6%; mo...

متن کامل

Involvement of Fenton chemistry in rice straw degradation by the lignocellulolytic bacterium Pantoea ananatis Sd-1

BACKGROUND Lignocellulolytic bacteria have revealed to be a promising source for biofuel production, yet the underlying mechanisms are still worth exploring. Our previous study inferred that the highly efficient lignocellulose degradation by bacterium Pantoea ananatis Sd-1 might involve Fenton chemistry (Fe2+ + H2O2 + H+ → Fe3+ + OH· + H2O), similar to that of white-rot and brown-rot fungi. The...

متن کامل

Methanogenic degradation of lignin-derived monoaromatic compounds by microbial enrichments from rice paddy field soil

Anaerobic degradation of lignin-derived aromatics is an important metabolism for carbon and nutrient cycles in soil environments. Although there are some studies on degradation of lignin-derived aromatics by nitrate- and sulfate-reducing bacteria, knowledge on their degradation under methanogenic conditions are quite limited. In this study, methanogenic microbial communities were enriched from ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • FEMS microbiology ecology

دوره 52 1  شماره 

صفحات  -

تاریخ انتشار 2005